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the higher dimensional ideal gas Riemann problem can be
approximated accurately by a succession of one-dimen-In this paper the equations of motion of an ultrarelativistic gas

are solved using the particle method SPH. The algorithm is based sional problems [6, 9, 18, 19], although it is not clear what
on a form of SPH which integrates the specific energy equation the situation is for more complicated systems. A further
instead of the thermal energy equation and determines the dissipa- consideration, relevant to the collision of nuclei, is that
tive terms along the lines of Riemann solvers. The resulting algo-

some Riemann methods do not easily handle those flowsrithms give good results for strongly relativistic shock tubes and
where large regions with low density are generated (forthey can handle collisions with relativistic velocities at least 0.9999

the speed of light. Because the method uses a resolution which example, linear Riemann solvers may fail for strong rar-
varies with time and in space it appears ideal for the simulation of efaction waves as in the Sjögreen test [8, 29] or the high
collisions between ultrarelativistic nuclei. Q 1997 Academic Press Mach number impulsive start of a cylinder [32]. The flux

rules of Donat and Maquina [5] are more robust, especially
the first-order algorithm but, to counter the excessive1. INTRODUCTION
smearing of contact discontinuities which this gives, a third-
order algorithm must be used. This third-order algorithmThe numerical study of relativistic fluid dynamics is a
fails for some examples of the Sjögreen test. A furtherkey element in the study of physical systems as diverse as
disadvantage of the Riemann methods is that they cannotastrophysical jets [1] and the collision of heavy ion nuclei
be generalized easily to include adaptive resolution. For[3]. However, it is only recently that satisfactory numerical
these reasons it seems appropriate to explore more flexiblemethods have become available for relativistic gas dynam-
algorithms for relativistic fluid dynamics.ics. It was initially thought that a fully implicit method

Particle methods such as SPH (for a review see [20])would be needed for ultrarelativistic gas dynamics [23] but
have advantages in collision problems because the particlesrecent work on Riemann methods [15–17] and upwind and
are concentrated with the material thus increasing the effi-FCT methods [25] has given good results for shock tubes,
ciency of the calculation. Furthermore, the resolution canblast waves, and relativistic jets [18, 19].
be made adaptive in space and time with little effort. EarlyDespite these results the finite difference solutions based
SPH applications to relativistic flows produced satisfactoryin whole or part on Riemann solutions have disadvantages
results but the problems considered were only mildly rela-[29, 30]. The first of these is that the Riemann problem
tivistic [12, 14] and when applied to ultra relativistic flowsmust be solved. In the nonrelativistic case approximations
they broke down. Part of the difficulty is that an artificial[4] can be used but, in more complicated problems, the
viscosity is required and it is not clear what form it shouldsolution of the Riemann problem can be a substantial un-
take [11, 21]. The problems are made more acute becausedertaking. For example, while there are solutions for the
the standard dissipative terms [7, 13] are known to beideal relativistic gas [16, 17], there are no solutions yet
unstable [10, 24].available for the Riemann problem for relativistic gases

Improvements to the standard SPH algorithms, particu-using the correct relativistic equation of state and allowing
larly through changes to the dissipation terms and thenew particle species to be produced during the evolution.
integration of the specific energy equation, instead of theThe situation in more than one dimension is worse because

many more basic states become possible. For example, in thermal energy equation, give very good results for nonrel-
ativistic shock tubes. In this paper we generalize thesethe simple case of an isentropic, two-dimensional, nonrela-

tivistic Riemann problem where four constant states meet algorithms to produce relativistic SPH equations which are
based on the conservation equations for momentum andat a common corner there are 16 different possible config-

urations (77 if the discontinuities are across two nonparallel energy. The dissipative terms are constructed in analogy
to terms in the Riemann methods with very good resultslines), and some of these are unstable [26]. Fortunately
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for highly relativistic fluid flows. The particle algorithm
ê 5

E
N

5 c S1 1 u 1
P
nD2

P
N

, (2.9)seems to be ideal for the study of collisions of heavy ion
nuclei.

where all energies and P/n are measured in units of m0c2

2. THE RELATIVISTIC EQUATIONS OF MOTION and, in the following, the unit of velocity is c.
Using these definitions we findWe begin with the equations of motion of a nondissipa-

tive fluid [13] which, for convenience, we assume is com-
posed of baryons. The Eulerian equations of motion for dq

dt
5 2

1
N

=P (2.10)
the laboratory baryon number density N, momentum M,
and energy E are:

and
Continuity,

dê
dt

5 2
1
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= ? (Pv), (2.11)­N
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­xj 5 0; (2.1)
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Momentum,
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­xj 5 2

­P
­xj d i j; (2.2)

Particles are moved according to
Energy,

dr
dt

5 v. (2.12)­E
­t

1
­

­xj ((E 1 P)vj) 5 0, (2.3)

These Lagrangian equations are identical in form to their
where nonrelativistic counterparts and they can be solved in a

similar way.
Mj 5 vjc2(P 1 X)/c2, (2.4)

3. THE RELATIVISTIC SPH EQUATIONSE 5 c2(P 1 X) 2 P, (2.5)

The usual forms of the SPH equations [20] can be takenand
over, except that each SPH particle b carries nb baryons
instead of mass mb . The continuity and momentum equa-X 5 nm0c2 1 nu. (2.6)
tions for particle a can then be written

In these equations c is the speed of light, m0 is the rest
mass of a baryon, n is the baryon number density in the dNa

dt
5 O

b
nb(va 2 vb) ? =aWab (3.1)

local frame of an element of fluid (so that N 5 cn), u is
the internal energy in the local frame, and

and

c 5
1

Ï1 2 v2/c2
. (2.7)

dqa

dt
5 2 O

b
nb SPa

N2
a

1
Pb

N2
b

1 PabD =aWab , (3.2)

M and E are the momentum and energy per unit volume.
In order to set up the SPH equations we need momentum where we have included a dissipative term Pab (symmetric
and energy per particle. The momentum per particle q and in a and b) which we will discuss below. The interpolating
energy per particle ê are given by kernel Wab is a function of ura 2 rbu so that its gradient can

be written

q 5
M
N

5 vc S1 1 u 1
P
nD (2.8)

=aWab 5 rabFab , (3.3)

where Fab is a negative scalar function which is symmetricand
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in a and b and rab denotes (ra 2 rb). This notation for
f̃(sL , sR) 5

1
2 SfL 1 fR 2 O3

i51
ul̃iu Dg̃iẽiD, (4.3)vectors is used throughout this paper.

From these properties of =aWab the interactions between
particles are antisymmetric and along their line of centres.

where L and R stand for the left and right states at aLinear and angular momentum
given interface. The li are the eigenvalues, and ei are the
eigenvectors of the Jacobian matrix,O

a
naqa and O

a
nara 3 qa , (3.4)

A 5
­f(s)

­s
, (4.4)

are therefore conserved.
It is usual in SPH calculations to work with the internal

and l̃i denotes an average of l for the left and right states.energy equation rather than specific energy equation
The quantities Dg are the jumps of the independent vari-(2.11). However, recent nonrelativistic calculations [22]
ables across the characteristics and they are given byshow that there are advantages in using (2.11) since the

dissipative terms can be guided by the terms arising from
Riemann solutions. In the relativistic case a further advan- sR 2 sL 5 O3

i51
Dg̃iẽi . (4.5)

tage of (2.11) is that, compared with the thermal energy
equation, it does not involve time derivatives of c.

One SPH form of (2.11) is obtained by first writing For relativistic ideal gases the eigenvalues for one-dimen-
sional problems are v and (v 6 cs)/(1 6 vcs), where cs

is the speed of sound. These last two are the speed of= ? (Pv)
N

5 v ? = SP
ND1

P
N2 = ? (Nv), (3.5) propagation of sound waves against and with the gas flow

as seen in the computing frame.
To construct an appropriate form of Pab for the interac-

from which we deduce tion between particles a and b we treat them as the equiva-
lent of left and right states taken with reference to the line
joining the two particles. With (4.2) and (4.3) in mind wedêa

dt
5 2 O

b
nb SPavb

N2
a

1
Pbva

N2
b

1 VabD ? =aWab , (3.6) need the equivalent of the eigenvalues and a jump in the
relevant physical variable, in this case the momentum. A
first choice for Pab might then beand we have included a dissipative term Vab , symmetric

in a and b, which we will discuss below. The total energy,

Pab 5 2
Kvsig(qa 2 qb) ? j

Nab
, (4.6)

E 5 O
a

naêa , (3.7)

where K is a dimensionless parameter p1, Nab 5
(Na 1 Nb)/2, vsig is an appropriate signal velocity (seeis conserved.
Section 5 below), and

4. RELATION TO RIEMANN SOLUTIONS

j 5
rab

urabu
(4.7)

The Riemann method of Marti et al. [15] provides a
convenient basis for the construction of Pab and Vab . Start-
ing with the equation written in conservation form, is the unit vector from b to a. However, to guarantee that

the viscous dissipation of a gas is positive definite, it is
necessary to replace q by­s

­t
1

­f
­x

5 0, (4.1)

q* 5 c*v S1 1 u 1
P
nD, (4.8)a simple Euler scheme for their numerical solution is

wheresn11
j 5 sn

j 2
Dt
Dx

(f̃(sj , sj11) 2 f̃(sj21 , sj)), (4.2)

c* 5
1

Ï1 2 (v ? j)2
. (4.9)

Marti et al. [15] define numerical fluxes by



ULTRARELATIVISTIC SPH 299

The reader is warned that in this paper the superscript u 5 c(ê 2 v ? q) 2 1. (4.16)
* denotes that the variable involves v ? j the line of sight ve-
locity. By differentiating (4.16) we find

The final form for Pab is
du
dt

5 2
P
N

dc
dt

1 c
dê
dt

2 cv ?
dq
dt

, (4.17)

Pab 5 2
Kvsig(q*a 2 q*b ) ? j

Nab
, (4.10)

which can be written

when particles a and b are approaching; otherwise Pab 5
0. The reader will notice that our expression for Pab is dua

dt
5 2 SP

N
dc
dtDa

1
caPa

N2
a
O
b

nbvab ? =Wab

(4.18)symmetric in a and b and it is similar to the usual viscous
dissipation term used in SPH.

1 caK O
b

nb

Nab
vsig[(e*a 2 e*b ) 2 (va ? j)(q*ab ? j)]rabFab ,In the same way, if a and b are approaching, we assume

where the term multiplied by K is the dissipation. If theVab 5 2
Kvsig(e*a 2 e*b )j

Nab
, (4.11)

gas is cold (that is, we set u and P to zero) the dissipation
term can be written

where we have replaced ê by e* which is identical to ê
except that c is replaced by c*. We set Vab 5 0 if the

caK O
b
S nb

c*a Nab

D vsig(1 2 c*ab)rabFab , (4.19)particles a and b are separating.
The momentum and energy equation then take the form

where c*ab is calculated with the velocity of particles a
relative to b along j. This velocity isdqa

dt
5 2 O

b
nb SPa

N2
a

1
Pb

N2
b

(4.12)
v*ab 5

va ? j 2 vb ? j
1 2 (va ? j)(vb ? j)

. (4.20)
2

Kvsig

Nab
(q*a 2 q*b ) ? jD =aWab

Since c $ 1 and Fab , 0 the dissipation is $0. This
and dissipation is the viscous dissipation of the cold gas. When

the thermal terms are reintroduced, the nonrelativistic
limit [24] shows that the thermal terms contribute to heatdêa

dt
5 2 O

b
nb SPavb

N2
a

1
Pbva

N2
b

(4.13)
conduction and therefore may increase or decrease the
internal energy of a parcel of fluid. The relationship be-
tween our dissipation terms and the entropy will be

2
Kvsig

Nab
(e*a 2 e*b )jD ? =aWab . given elsewhere.

5. THE SIGNAL VELOCITY
If the gas is cold (u and P both zero) the contribution to

dissipation of a from b in the momentum equation involves The local eigenvalues for the relativistic one-dimen-
sional Euler equations are (v 6 cs)/(1 6 vcs) and v. In
finite difference solutions the appropriate signal velocitiesc*a va ? j 2 c*b vb ? j, (4.14)
depend on the solution of a Riemann problem for the
left and right states of the finite difference cells (see, forwhile the dissipation in the energy equation involves
example, [27, 28] for the nonrelativistic case and [16, 17]
for the relativistic case). In SPH simulations we can con-

c*a 2 c*b . (4.15) sider the particle a and the particle b as the left and right
states. The one-dimensional Riemann problem is then
taken with respect to motions along the line joining theThese terms are similar to the dissipation based on baryon

scattering used by Amsden et al. [2] for a fluid dynamical two particles and the appropriate signal velocity is the
speed of approach (as seen in the computing frame) ofsimulation of nuclei collisions.

To determine an equation for the rate of change of signals sent from a towards b and vice versa [22].
It is useful to recall how the non-relativistic signal veloc-thermal energy we write u in terms of q and ê,
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ity is estimated [22]. We begin by noting that the speed of approximations which, remarkably, lead to quite good re-
sults. In the first of these we replace (5.2) bysound associated with particle a (taking into account the

new state) is approximately

c9a 5
ca 1 uv*abu

1 1 cauv*abu
, (5.6)c9a 5 Ïc2

a 1 b(vab ? j)2, (5.1)

where b is a parameter p1. We can approximate (5.1) by with a similar expression for c9b . This approximation, al-
though rather crude, has the right non-relativistic limit and

c9a 5 ca 1 uvab ? ju. (5.2) provides a reasonable bound on the effective speed of
sound. Our first signal speed is then defined to be

The signal velocity we need is the speed of approach of
the signal sent from a to b and that from b to a as seen in

v(1)
sig 5

ca 1 uv*abu

1 1 cauv*abu
1

cb 1 uv*abu

1 1 cbuv*abu
1 uv*abu. (5.7)the computing frame. The argument for this choice is that

when information about the states meets it is time to con-
struct a new state. It is precisely this relative speed which

The second form for vsig is based on the speed of soundshould be used in the Courant condition.
produced when two cold streams collide at ultra relativisticThe component of the velocity of a along the line joining
speeds. When the cold gas is shocked its thermal energya to b is
jumps to (c 2 1), where c is calculated with the relative
velocity of the pre- and postshocked states. We simply addv*a 5 2va ? j, (5.3)
a term of this form to the thermal energy in the definition
of the speed of sound of a relativistic gas. The effective

and the nonrelativistic signal velocity is then
speed of sound for particle a then has the form

vsig 5 (v*a 1 c9a) 2 (v*b 2 c9b), (5.4)
c9a 5 S c2

a 1 b(c*ab 2 1)

1 1 (c2
a 1 b(c*ab 2 1)/(G 2 1))

D1/2

, (5.8)
which can be approximated by

where c*ab (defined after (4.19)) is the c calculated usingvsig 5 ca 1 cb 1 3v*ab , (5.5)
the component of the velocity of a relative to b along j
and G is the adiabatic index (see (7.1). This form of thewhere
effective speed of sound is a natural generalization of (5.1)
and it has the correct relativistic limit (when c*ab is infinite

v*ab 5 v*a 2 v*b 5 2vab ? j and G 5 Fd) and the correct nonrelativistic limit.
As in the nonrelativistic case we construct the signal

is $0 for approaching particles. When the particles are not velocity by determining the speed with which sound waves
approaching, we turn the dissipation terms off and vsig is from a to b and vice versa approach according to an ob-
not needed. server at rest in our computing frame. This is given by

The reader might wonder why we do not solve the exact subtracting the signal velocities to give what we have called
one-dimensional Riemann problem to determine the signal vsig . We do not calculate the velocity of one propagating
speed. As mentioned in the introduction our aim is to signal relative to the other but simply subtract the signals
estimate simple robust approximations which do not de- since this tells us when the states need to be recomputed.
pend on solving the Riemann problem for each new mate- Our second signal velocity is then
rial. It is already known that, for nonrelativistic materials
(including gases, liquids, and metals) that dissipative terms
of the kind considered here give good results. We hope to v(1)

sig 5
c9a 1 v*a

1 1 c9av*a
2

v*b 2 c9b

1 2 c9bv*b
. (5.9)

achieve that universality with the dissipation being con-
sidered.

To generalize these results to the relativistic case we Since Schneider et al. [25] have found that their results
do not depend sensitively on approximations to the signalfirst need to estimate the speed of sound equivalent to

(5.1) or (5.2). We are unaware of good estimates of the velocities and nonrelativistic SPH simulations are not sen-
sitive to the approximations, we expect (and it is bornespeed of sound comparable to (5.1) and there are infinitely

many choices which reduce to (5.1) in the nonrelativistic out by the calculations for gases) that these signal speeds
will give similar results.limit. In this paper therefore we confine ourselves to simple
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The parameter K has not yet been specified. In the which can be written as a function of P by noting from
(4.16) thatabsence of other information we choose K 5 0.5, since

this is the value found to work for the nonrelativistic simu-
lations. We find that it leads to satisfactory results.

u 5
ê
c

1
P(1 2 c2)

Nc
2 1, (7.2)Finally we note that, unlike finite difference Eulerian

codes, we do not include any signal based terms in the
continuity equation. They are unnecessary for SPH. and from (2.8) and (2.9),

6. THE TIME STEP c 5 1/Ï1 2 q2/(ê 1 P/N)2. (7.3)

The local Courant condition is
At the end of the step (or after a predictor step) we have
new values of q, N, and ê. With these values (7.3) defines

dtc 5
D

vsig
, (6.1) c as a function of P. Substituting for c into (7.2) gives u

as a function of P. Finally, substituting these quantities
into (7.1), and replacing n by N/c converts (7.1) into awhere D is a distance related to the separation of the
nonlinear equation for P which we solve using the Newton–particles. In the calculations to be described here the parti-
Raphson method.cles have an h Y 1/N and therefore approximately propor-

tional to the particle separation. It is not exactly propor-
8. NUMERICAL TESTStional because N is a smoothed density. However, in order

to work out the rates of change, we use a symmetric h for
In the following experiments we integrate the accelera-

the interaction between two particles given by h 5
tion, energy, and continuity equations using a second-order

(ha 1 hb)/2, and this can differ significantly from the local
predictor–corrector method. The numerical integration

particle separation. We have experimented with replacing
conserves total energy and momentum to within the

D by both the symmetric form of h and by the separation
roundoff error (10217 for these calculations).

of the interacting particles. In general the results are very
In all cases the resolution length h for the kernels was

similar with the exception of the wall shock problem where
allowed to vary with density according to the rule h Y

using the particle separation gave absurdly small time
1/N. When calculating the kernels and their derivatives we

steps.
use the average h 5 0.5(ha 1 hb). The initial value of haThe Courant time step control uses the minimum of
was 1.5 the initial particle spacing at the position of particle

(6.1) over all particles. In addition to a time step control
a. We use the cubic spline kernel [20].

based on the Courant condition we also use a time step
Discontinuities in the initial u and N were smoothed

based on the rate of change of q. This time step control was
according to the rule

introduced for astrophysical problems where body forces
would occur. Denoting the rate of change of q by f the
time step takes the form A 5

AL 1 ARex/d

1 1 ex/d , (8.1)

dtf 5 (Ïh/ufu), (6.2)
where AL denotes the uniform state to the left of the origin,
AR denotes the uniform state to the right of the origin,where the minimum of dtf is taken over all particles. In
and d is taken as half the largest initial particle separationour computations we use the minimum of dtc and dtf . We
at the interface. The SPH simulations are more consistentfind they give a very similar time step control, except for
with smoothing the initial conditions with the kernel. Inthe early stages of some computations when dtf gives a
the present case this presents some problems because thesmaller time step.
h we choose for each particle depends on the density which
in turn will depend on the smoothing and therefore on the7. SOLVING FOR P AND V
h. The crude but simple smoothing (8.1) gives satisfactory

Following [17] we determine P, v, and u by rewriting results but we are aware that it can hardly be the optimum
the equation of state as a function of P alone, using the way to smooth the initial conditions.
values of N, q, and ê from the integration of the equations Since we use SPH particles with equal numbers of bary-
of motion to express u, and c as functions of P. In this ons higher densities are associated with closer particle spac-
paper the equation of state is ing and, if the initial density is discontinuous, and it is

smoothed according to (8.1), the particle spacing and the
initial h must also be smoothed. In the case of the shockP 5 (G 2 1)nu, (7.1)
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FIG. 1. Velocity against distance for the two cold colliding streams FIG. 3. Number density N against distance for the colliding streams.
each with speed 0.9999. Details are given in the text.

The initial particle spacing is 0.001 and v(1)
sig is used. The

time step is based on D 5 (ha 1 hb)/2.tube, for example, the spacing changes by a factor of 10
The velocity profiles in Fig. 1 show no sign of oscillationacross the initial interface and, if this is not smoothed, the

and the shock is spread over about three initial particleevolution is very badly corrupted. This might be expected
spacings. In common with the nonrelativistic SPH calcula-since SPH is based on smoothing the equations of motion.
tions for the wall shock the thermal energy and the densityThe particles are spaced according to the rule
have an error of a few percent at the interface (the error
in the number density is larger) but the postshock valuesraAs(xa11 2 xa21) 5 rR DR , (8.2)
have errors of only 0.2%. These results agree well with
those of Schneider et al. [25], although their RHHLEwhere rR is the density of the fluid to the far right of the
method gives better results at the interface. Very similarorigin where the particle spacing is DR .
results were obtained using v(2)

sig .

Wall Shock
Blast Wave

In Figs. 1 to 3 we show the result of two identical cold
In Figs. 4 to 7 we show the results for the blast wavestreams of gas with G 5 Gd colliding. The initial conditions

simulated by Martı́ and Müller [17]. The initial configura-are N 5 1, u 5 1026 and the speed of each stream is 0.9999.

FIG. 4. Velocity against distance for the blast wave. Details are given
in the text.FIG. 2. Thermal energy u against distance for the colliding streams.
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FIG. 8. Velocity against distance for the shock tube. Details are givenFIG. 5. Thermal energy for the blast wave.
in the text.

tion consists of a static gas with G 5 Gd. To the left of the
initial interface, N 5 1 and P 5 1000, while to the right
of the interface, N 5 1 and P 5 0.01. The particle spacing
is 0.001 and we use v(2)

sig and a time step based on D 5
(ha 1 hb)/2. The velocity profile is smooth and the shock
is spread over about three initial particle spacings. There
are several particles in the shock profile but this is due to
the density jumping by a factor 40 and the particle spacing
decreasing by p40. The thermal energy shown in Fig. 5 is
excellent, except for the smoothing near the shock front.
The density profile in Fig. 6 shows the characteristic spike
which makes this a difficult problem. The SPH calculation
is very good except for an overshoot of the spike. In Fig.
7 we show the spike in more detail. It can be seen that apart
from the overshoot the SPH simulation overestimates the

FIG. 6. Number density N against distance for the blast wave. shock speed by p2%. These results are in good agreement
with those of Martı́ and Müller [17] and Martı́ et al. [15]
who also find that significant errors occur in the spike (our
errors are smaller but they use only 400 cells). Similar
results were obtained using v(1)

sig and a time step based on
D equal to the spacing of the two interacting particles.

Shock Tube

In Figs. 8 to 10 we show results for the shock tube
simulated by Martı́ and Müller [17]. The initial configura-
tion consists of a static gas with G 5 Gd. To the left of the
interface N 5 10 and P 5 Fe:. To the right of the interface
N 5 1 and P 5 1026. The particle spacing to the right of
the interface is 0.005 and, because we use SPH particles
with an equal number of baryons, the spacing to the left
of the interface is 0.0005. The density and the spacing are
smoothed according to (8.1).

We use v(1)
sig and a courant time step based on D 5

FIG. 7. Details of the number density spike for the blast wave. (ha 1 hb)/2. The velocity profile in Fig. 8 shows very slight
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in the rarefaction we initially have a much better resolution
(0.0005) which then ranges between 0.0005 and 0.001 as
the system evolves.

9. DISCUSSION

The ultra relativistic SPH algorithm described in this
paper gives good results for the ideal relativistic gas in
shock tubes and similar configurations. Carefully tuned
Riemann solvers give more accurate results for the same
resolution but SPH has the advantage that it can be made
adaptive almost trivially, and it can be extended easily to
configurations involving more complicated physics.

Improvements can be expected in the way vsig is deter-
mined, although the simulations described here indicate a
remarkable tolerance to its precise form. The evaluationFIG. 9. Thermal energy against distance for the shock tube.
of the density from the continuity equation is clearly ade-
quate for quite extreme conditions. In addition to the simu-
lations described here we also simulated the expansion ofoscillations but, overall, the results are good. The thermal
a relativistic gas into a vacuum to check that low densityenergy profile in Fig. 9 shows the effect of excessive thermal
regions would be simulated satisfactorily. We have not yetdiffusion around the contact discontinuity. In the case of
experimented with the strong rarefactions which would bestrong nonrelativistic shocks this thermal diffusion was re-
expected in the relativistic version of the Sjögreen test,duced by defining e* with reduced thermal energy [22]
where two regions of gas move away from each other. Thebut in the relativistic case it is not clear how to do this
problems which might arise would be due to errors in theconsistently. The pressure profile in Fig. 10 shows that
integration of the continuity equation in the form (3.1)the pressure is constant between the rarefaction and the
which might lead to the fatal error of negative density.leading shock front.
This problem could be controlled easily either by using,Compared to the results obtained by Schneider et al.
in place of (3.1),[25] our results are substantially better than those from

the SHASTA code and comparable to those with RHHLE
and LCPFCT. It is difficult to make an entirely fair com- dNa

dt
5 Na O

b

nb

Nb
vab ? =bWab , (9.1)

parison between the finite difference methods and SPH
for these calculations because our particles enter the shock

which can be easily integrated for log Na , after which Nawith a resolution (0.005) which is the same as Schneider
can be recovered in a positive definite form. Alternatively,et al. but poorer than that of Martı́ and Müller (0.0025), but
Na can be found by the usual SPH summation formula
which guarantees that the density is positive definite.

The extension of our algorithm to two or more dimen-
sions is trivial since vector quantities have been used. The
determination of those particles which contribute to a given
particle’s properties is, however, more difficult because
each particle has its own h. In astrophysical calculations
tree codes are used since they are used to calculate the
gravitational forces. For a pure fluid dynamical simulation
it would be preferable to use rank lists.
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